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“How small can a set in the plane be in which you can turn a unit needle completely around?”
This was the question which gave birth to the yet unsolved Kakeya problem more then 100 years
ago. In 1999 Wolff proposed a new version of the problem [Theorem 1] in a finite vector space
instead of Rn, which was then thought to be almost as hard as the original problem. In 2008 Dvir
published a marvelous proof that uses only two simple lemmas [3 and 5] and can even fit in very
narrow margin!

Notations and definitons:

• F will always denote a field and Fn
q is the n-dimensional vector space over the finite field with

q elements.

• We denote by PolyD(Fn) the space of polynomials in n variables, with coefficients in F and
of degree at most D.

• A Kakeya set K ⊂ Fn
q is a set that contains a line in every direction. More formally, K is a

Kakeya set if for all a ∈ Fn
q \ {0} there exists some b ∈ Fn

q such that {at+ b : t ∈ Fq} ⊂ K.

1 Introduction to the polynomial method

We begin this first part with our main theorem, the most celebrated example of the polynomial
method.

Theorem 1 (Dvir). For a Kakeya set K ⊂ Fq
n it holds

|K| ≥ cnq
n

for cn = (10n)−n.

Proof idea. To prove the statement we assume the contrary, that K ⊂ Fq
n is small. Using the

parameter counting argument we can find a non-zero polynomial P of degree D < q vanishing on
K. But knowing that K is a Kakeya set, using the vanishing lemma, we imply that P vanishes
on lines with q points pointing in all directions. From this fact it follows that the coefficients near
the highest degree terms of P vanish as well, contradicting the degree of the polynomial P .

Lemma 2 (Parameter counting). Let S ⊂ Fn be a finite set. If dim(PolyD(F)) > |S|, then there
exists a non-zero polynomial in PolyD(F) that vanishes on S.

Proof. Consequence of Rank-nullity theorem applied on evaluation map PolyD(F) → F|S|.

Corollary 3. For n ≥ 2, for a finite subset S ⊂ Fn, there is a non-zero polynomial of degree
≤ n|S|1/n that vanishes on S.

Lemma 4. If P ∈ PolyD(F) vanishes at D + 1 points, it is the zero polynomial.

Proof. Consequence of division with remainder in the ring of polynomials.

Corollary 5 (Vanishing lemma). Let l ⊂ Fn be a line, i.e. a 1-dim affine subspace. If P ∈
PolyD(F) vanishes at D + 1 points of l, then P vanishes on the whole l.



2 The story before the polynomials

All the methods that do not use polynomials, at least those presented here, have one thing in
common, they do not exploit all the information contained in the definiton of a Kakeya set.

Proposition 6 (The naive method). Suppose s ≤ q. If l1, l2, ..., ls are lines in Fn
q , their union has

cardinality ≥ 1
2
qs.

In particular, for a Kakeya set K ⊂ Fn
q it holds |K| ≥ 1

2
q2.

Proposition 7 (Bush method). If l1, l2, ..., ls are lines in Fn
q , their union has cardinality ≥ 1

2
qs1/2.

In particular, for a Kakeya set K ⊂ Fn
q it holds |K| ≥ 1

2
q

n+1
2 .

Proposition 8 (Hairbrush method [Wolff]). If l1, l2, ..., ls are lines in Fn
q and only at most q + 1

of them lie in any 2-dimensional plane, then their union has cardinality ≥ 1
2
q3/2s1/2.

In particular, for a Kakeya set K ⊂ Fn
q it holds |K| ≥ 1

2
q

n+2
2 .
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